Factors determining the efficacy of nuclear delivery of antisense oligonucleotides by gold nanoparticles.
نویسندگان
چکیده
The present study investigates the applicability of nanoparticle delivery vectors for two-stage targeting that involves both cell entry by endocytosis and nuclear targeting using viral peptide signals. A nanoparticle vector consists of four components: a carrier nanoparticle, a stabilizer, targeting peptides, and a therapeutic cargo. Extensive study of bovine serum albumin (BSA)-peptide stabilized nanoparticle conjugates demonstrated limitations of these systems due to colloidal instability when oligonucleotides and multiple peptides were attached to the BSA protein. We found that the widely used protein streptavidin (SA) was an appropriate alternative to BSA for cell-targeting experiments. Targeting peptides and gene splicing oligonucleotides were attached to SA-nanoparticles using biotin labels. The present study uses a gene-splicing assay as a test for oligonucleotide delivery to the cell nucleus. Successful modification of gene splicing by an antisense oligonucleotide indicates that the latter must have crossed the plasma membrane, entered the nucleus, found the target sequence in the newly transcribed pre-mRNA, and hybridized to it in the spliceosome strongly enough to displace the splicing factors designed to interact with the target sequence. Targeting nanoparticles that carry gene-splicing oligonucleotides were compared with a control experiment that used lipofectamine (LF). While enhanced activity was observed in the control experiment, in the presence of LF, no gene splicing was observed for the nanoparticle targeting vectors without LF. We conclude that sequestration of cargo from the harsh conditions of the endosome is a desirable strategy for cell-targeting nanoparticles.
منابع مشابه
Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development
Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...
متن کاملThe Efficiency of CD40 Down Regulation by siRNA and Antisense ODN: Comparison of Lipofectamine and FuGENE6
Background: Dendritic cells (DCs) are ideal accessory cells in the field of gene therapy. Delivery of DNA and siRNA into mammalian cells is a useful technique in treating various diseases caused by single gene defects. Selective gene silencing by small interfering RNAs (siRNAs) and antisense oligodeoxynucleotides (ODN)s is an efficient method for the manipulation of cellular functions. An effic...
متن کاملGold and Iron Oxide Nanoparticle-Based Ethylcellulose Nanocapsules for Cisplatin Drug Delivery
The present study is aimed at the overall improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of cisplatin. Nanocapsules of cisplatin containing ethylcellulose have been prepared using solvent evaporation technique under ambient conditions. The prepared nanocapsules were used for controlled drug release of anticancer agents with gold and iron oxide nanoparticles. ...
متن کاملA real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles
Here we report a real-time PCR-based method for determining the surface coverage of dithiol-capped oligonucleotides bound onto gold nanoparticles alone and in tandem with antibody. The detection of gold nanoparticle-bound DNA is accomplished by targeting the oligonucleotide with primer and probe binding sites, amplification of the oligonucleotide by PCR, and real-time measurement of the fluores...
متن کاملPeptide antisense nanoparticles.
We have designed a heterofunctionalized nanoparticle conjugate consisting of a 13-nm gold nanoparticle (Au NP) containing both antisense oligonucleotides and synthetic peptides. The synthesis of this conjugate is accomplished by mixing thiolated oligonucleotides and cysteine-terminated peptides with gold nanoparticles in the presence of salt, which screens interactions between biomolecules, yie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioconjugate chemistry
دوره 19 5 شماره
صفحات -
تاریخ انتشار 2008